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ABSTRACT 
Autonomous robots offer the potential to conduct Counter- 
Weapons of Mass Destruction (C-WMD) missions in an efficient 
and robust manner. However, to leverage this potential, a mission 
designer needs to be able to determine how well a robot system 
will operate in the noisy and uncertain environments that a C-
WMD mission may require.  We are developing a software 
framework for verification of performance guarantees for C-
WMD missions based on the MissionLab software system and a 
novel process algebra approach to representing robot programs 
and operating environments.  
In this paper, we report on our initial research for the Defense 
Threat Reduction Agency (DTRA) in understanding what is 
required from a performance guarantee to give a mission designer 
the information necessary to understand how well a robot program 
will perform in a specific environment. We link this to prior work 
on metrics for robot performance. Using a simple mission 
scenario, we explore the implications of uncertainty in the four 
components of the problem: the robot program, and the sensors, 
actuators and environment with which the program is executed. 

Categories and Subject Descriptors 

I.2.9 Robotics; D.2.4 Software/Program Verification; D.2.6 
Programming Environments 

General Terms 
Performance, Languages, Verification, Robotics. 

Keywords 
Performance guarantees, probabilistic and emergent robotic 
systems. 

1. INTRODUCTION 
To effectively deploy an autonomous robot or robot team to 
search and locate weapons of mass destruction, it is important to 
have performance specifications and guarantees available for the 
equipment. Because of the severe potential downside in these 
mission-critical operations, the robot and its software must have 
the best chance of succeeding given the environmental conditions 
and other constraints in which it must operate. However, this 
environment may be uncertain, and the software that operates the 

robot or robot team may be probabilistic [20], emergent [1], 
and/or multiagent [3]. Although tremendous strides have been 
made in software verification (e.g., [9]), this high-impact problem 
remains extremely challenging. 
An important component of the solution is to understand what 
performance guarantees are useful and possible for Counter- 
Weapons of Mass Destruction (C-WMD) missions. In this paper 
we present an overview of the system, which is based on the 
MissionLab1 mission specification system [17], being developed 
for integrating the generation and use of performance guarantees 
as an iterative step in the design of robot software for C-WMD 
missions. Using examples in this design framework, we analyze 
what mission performance guarantees are of value to a mission 
designer from the perspectives of understanding how well the 
system will function and of understanding how to improve its 
performance. 
In the next section, we review related work in the area of 
automatic verification of system performance, and in the 
development of performance measurements and guarantees. 
Section 3 reviews a selection of performance measurements. In 
Section 4 we introduce a simplified example scenario to help 
understand how uncertainty in sensor, actuator and environment 
models influences the form of the performance guarantee, making 
it quite different from the form of liveness and safety guarantees 
typically seen in software verification. Section 5 then introduces 
the architecture we have developed to integrate verification into 
the MissionLab software system. 
 

2. RELATED WORK 

The field of formal specification and verification of software 
systems (e.g., Hinchey et al. [7], Clark et al. [4]) has made 
impressive progress. However, leveraging these results to validate 
software for mobile robot systems has raised challenges. 
Probabilistic [20] and behavior-based mobile robotics [1] employ 
assumptions quite different from those used more generally in the 

                                                                 
1 MissionLab is freely available for research and educational purposes at: 

http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/. 
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formal analysis of software. One key example is a reliance on 
emergent behavior: even simple behavior-based systems exhibit 
complex behavior when acting in a complex environment. This 
means that formal analysis must include the control program and 
models of the sensory and motor apparatus as well as environment 
models.   

Discrete-Event Control techniques (e.g., Ramadge [19], Kosecka 
[10]) have been applied to this problem. Most use Finite State 
Automata (FSA) as a modeling tool. However, FSA models can 
suffer from state-space explosion when used to model the kind of 
realistic search environments that occur in C-WMD.  While prior 
work addresses issues of noisy and uncertain applications, it does 
so for problems at a relatively low sensorimotor level as compared 
to for example, algorithms from data mining, artificial 
intelligence, machine learning and complex adaptive systems 
theory. Also, work in this area is focused on automatically 
producing a control strategy or controller, whereas our focus is on 
verifying software produced by some other means (in our case, 
generated by a human operator using MissionLab). More recently 
the discrete-event and hybrid approach has been extended to robot 
path planning and motion control (e.g., Kress-Gazit [11]) with the 
idea that a human provides a high-level, rich constraint 
description in linear or interval temporal logic, and a controller is 
automatically synthesized for these constraints. However, the 
input constraint or constraints in these systems are quite complex 
and themselves may now need verification. 
The metrics for the performance measurement and guarantees of 
behavior-based and probabilistic software systems have not been 
standardized so far, although considerable work is proceeding in 
the characterization of performance metrics for robot performance 
[8]. This is the case not only with behavior-based systems but 
with a broader category of systems that are required to carry out 
specific tasks intelligently by interacting with real world 
environments. Serious effort is underway towards standardization 
of these metrics [16] but the challenges are many. Behavior-based 
system requirements need to cover a wide spectrum of behaviors 
ranging from simple tasks such as point-to-point locomotion to 
relatively complex tasks such as human-robot interaction. The 
expectations are growing regarding reliable and predictable 
performance as new possibilities in design are being explored and 
milestones are being achieved. 
Urban search and rescue (USAR) is a domain that is being heavily 
studied in this context. There are two groups of performance 
metrics for the characterization of USAR systems that can be 
broadly classified as system characterization and behavior 
characterization. System characterization seeks accurate 
specification of specific robot capabilities to facilitate direct 
comparisons of different robotic platforms, and particular 
configurations of similar robot models. The National Institute of 
Standards and Technology (NIST) has taken a leadership role for 
defining performance standards for USAR robots [8]. These 
standards are categorized as human-robot interaction, system, 
safety, mobility, etc., along with documentation for standard 
reproducible test procedures. For our purposes, these system 
metrics will primarily serve as specifications of particular 
capabilities of the robot with the view of providing a guarantee to 
the user regarding the ranges of behaviors the system provides, 
before it is deployed in the real world in the context of a C-WMD 
mission. Behavior characterization deals with the problem of 
predicting performance guarantees for high-level tasks to be 
carried out in uncertain, unstructured, and potentially hostile 
environments such as navigation, localization and mapping, room 
search, etc. Some related research exists in performance 

characterization of higher-level algorithms, i.e., [18] [5], that is 
intended for the comparison of different algorithmic performance. 
This comparison would traditionally be done by demonstration 
(empirical evaluation) instead of formal analysis. Such metrics, 
however, may prove to be useful as they may improve the 
expressiveness with which the operator can specify required 
performance.  
 

3. PERFORMANCE CRITERIA 
 
An important requirement for any evaluation is the establishment 
of the performance criteria which will serve as the basis for 
specification and evaluation of the system in question. A method 
is needed for defining performance goals which not only 
accommodates various ranges of capabilities but in our case also 
comfortably fits into the process algebra framework we use for 
verification; this framework is based on that described in [12]. 
The absence of any published standards in this regard as well as 
the growing needs for the capabilities of C-WMD/USAR systems 
makes this an important area of investigation. 
Due to the complexity associated with many formal methods, the 
performance of control algorithms designed for robots has 
traditionally been guaranteed only through empirical evaluation 
and demonstration on real systems. Many performance criteria 
have been devised to compare the performance of such algorithms 
in this context [8]. Those criteria serve as a reference for defining 
the mission performance criteria for our verification procedures.  
Since we are targeting the USAR/C-WMD applications, a good 
starting point is to identify the most common requirements in this 
application area. These include navigation, exploration, 
localization, mapping, search, and victim identification (among 
other things). We can then refer to the large body of literature 
available for the performance evaluation of the algorithms 
designed for these high-level system goals. In navigation, for 
example, [18] has proposed a set of useful performance metrics 
along with their formulae and algorithms that could directly be 
applicable to our framework. These include safety metrics (e.g. 
mean obstacle distance), dimensional metrics (e.g. trajectory 
length, time of completion) and smoothness metrics (e.g. bending 
energy, smoothness of curvature). Similar propositions are made 
in [5]. Related work is available for other areas of application as 
well. Currently there is no universal agreement with regards to 
these metrics, but it is hoped that the availability of common tools 
and techniques to verify, validate, and formally prove 
performance guarantees for high-level mission controllers will 
lead to standardization of such performance characterization. 
The metrics discussed above can be accommodated as part of our 
framework, allowing the user to specify the mission goals and 
expectations, i.e., specific mission criteria. In the case of multiple 
metrics/criteria, the user may then choose to investigate whether a 
mission is likely to experience a catastrophic failure or whether a 
graceful degradation is more likely. This is a powerful feature of 
our approach; we are not just interested in binary yes/no answers 
regarding performance guarantees as might be typical for more 
traditional software verification. The information that a mission 
designer or operator needs to decide whether to deploy a robot 
mechanism for a C-WMD mission includes not only the standard 
concepts of mission completion („liveness‟) and safety, but also 
information about how likely overall success might be, given the 
noisy and uncertain environment for the mission. 



4. ROBOT SCENARIOS 
 
Performance criteria need to reflect the missions with which 
robots will be tasked. In this section we look at several example 
missions and consider how they impact what must go into a 
performance criterion. In the first example the robot control 
strategy is deterministic, where the sensor and actuators operate 
with no noise and where there is no uncertainty in the 
environment model. 
 

4.1 Deterministic Scenario 
A robot searching an area for a target executes actuator commands 
to move through the search area, deploying its sensors to search 
for the target.  

 The robot program is deterministic. 
 If the actuators always carry out the motion commands 

exactly, then the robot program can always rely on 
knowing where it is and hence where it has been.  

 If the sensors always report the situation in the 
environment with certainty, then obstacles, other agents 
and the target can always be reliably detected.  

 Finally, if the environment in which the robot operates 
has no associated uncertainty, then the robot program 
will always fulfill its mission requirements or it will 
always fail. 

This deterministic scenario does not reflect many actual operating 
situations; however, it is necessary to include it as a base case. We 
introduce a very straightforward example of a search task to drive 
this and the succeeding scenarios. Consider a robot moving from 
one location A to a second location B repeatedly as shown in 
Figure 1. 

 
Figure 1: Repeated Traverse Mission 

 
The mission designer is interested in two kinds of guarantees 
which we can broadly categorize using the traditional Liveness 
and Safety terms: 

1. Liveness: Will the robot achieve a mission objective? 
Examples might include: 

 Will the robot arrive at B? (Note that the 
complexity of the control strategy or 
environment model, or the accuracy of the 
sensors or actuators, may still render this a 
difficult verification problem.) 

 Will the robot complete n traversals from A to 
B? 

 Will the robot complete n traversals from A to 
B by time t? 

2. Safety: Will the robot be free of error situations while 
carrying out its mission object? Examples could 
include: 

 Will the robot avoid any and all obstacles 
between A and B? 

 Will the robot keep its power consumption 
within safe levels at all times? 

 Will the robot always read its radiation sensor 
at a rate of 10Hz or higher. 

Because there is no uncertainty in this example scenario, the 
performance guarantees exhibit a binary nature; the robot program 
will conform to the performance guarantee or it won‟t. This is 
typical of the kind of verification constraints seen in general-
purpose software verification. 
 

4.2 Nondeterministic Environment 
Consider a modification of the previous example in which the 
terrain between locations A and B has an element of uncertainty 
with respect to its traversability. The actuators and sensors remain 
deterministic in their performance and the search program itself is 
deterministic. 
 The environment in which the robot now has to operate is one 
that can contain patches of terrain that are more difficult to 
traverse and the robot will make less progress on these patches. 
Any particular execution of the robot mission will encounter some 
number of patches and be slowed as a result. Different executions 
might encounter different numbers of patches, and hence exhibit a 
range of performance. 
This possible range of performance complicates the performance 
guarantee beyond the binary case we have discussed before. Now 
consider the liveness condition: Will the robot complete n 
traversals from A to B in time t? In the deterministic scenario, the 
robot would either always or never achieve this. However, in this 
scenario, there will be some executions in which the robot does 
achieve this performance and some in which it does not.  

4.2.1 Expected performance 
If we leverage the probabilistic concept of expected value, then 
one approach is to ask:  

 Is the number of expected traversals from location A to 
location B in time t equal to n?  

 Alternatively we can ask, is the expected time for the 
robot to complete n traversals from location A to 
location B equal to t? 

Even though the environment is not deterministic, this form of the 
performance guarantee maintains the easy binary structure of the 
deterministic case. This increases the realism of the scenario 
without complicating the way in which the mission designer has 
to understand performance. 
Nonetheless, this approach does hide the variation in performance 
behind the concept of expected value.  That variation may itself be 
a useful and sometimes necessary tool for the mission designer. 

4.2.2 Performance Confidence 
In scenarios where the options are limited and the risks are high, a 
mission designer may consider it reasonable to deploy a robot for 
a mission even though the reasons to believe the robot will 
succeed are somewhat slim. Therefore it is also important to make 
the information about the variability in performance available to 
the designer in a performance guarantee.  



Returning to the traverse example, a designer can reasonably want 
to know: 

 how likely it is that the robot will complete n traversals 
from location A to location B in time t given the 
environment in which it has to carry out the mission. 

This additional information is purchased at the cost of 
complicating the performance guarantee to include a probability 
that needs to be interpreted by the mission designer. A reasonable 
interpretation might be: For a very large number of executions in 
this environment, in what percentage of executions does the robot 
complete n traversals from location A to location B in time t or 
less?   
 

4.3 Noisy Sensors and Actuators 
Moving another step towards making our initial, deterministic 
scenario more realistic, let us now consider a situation where the 
robot sensors and actuators operate with noise. That is, the motion 
command communicated to the robot by the robot program may 
not always produce the same effect on the robot, and a sensor 
reading taken during the identical environmental conditions may 
yield different measurements. The robot program remains 
deterministic. 

4.3.1 Expected Performance 
The consequence of this uncertainty for the repeated traversal 
mission is that the robot may not always reach the locations A and 
B, irrespective of terrain traversability. After some number of 
traversals, the robot may conceivably have drifted far from A and 
B. A mission designer might ask: 

 After n traversals from A to B, will the expected 
location of the robot be within a distance r of location 
B? 

This is an application of the expected value concept again, but in 
this scenario to a spatial objective rather than a temporal one. 

4.3.2 Performance Confidence 
 In the scenarios in which knowledge of the variation in 
performance is important, a designer may want to ask: 

 After n traversals from A to B, how likely is the robot to 
be within a distance r of location B, given the 
environment in which the program is carried out. 

This more complex performance criterion can be interpreted as 
follows: after a large number of different executions of the 
program in this environment, in what percentage of them was the 
robot within a distance r of the location B. 
Even this more complex form of the performance criterion hides 
information. If the likelihood of being within r of location B is a 
value p, then for the remaining 1-p cases we can ask, how badly 
do they each fail to meet this criterion? 

4.3.3 Performance Distribution 
A description of the performance of the system in the cases in 
which the robot program does not meet its performance criteria 
contains valuable information. Let us consider that the sensor and 
actuator models are now extended to include the case of sensor 
and actuator failure. For the repeated traversal mission, not only 
may the robot position drift from the goal locations, it may go 
catastrophically wrong as the robot becomes stuck at a location. 
Consider the graphs shown in Figure 2. The horizontal axis is 
position and the vertical is the likelihood of attaining that position 
given the environment in which the program is executed. The 

location of the point B is indicated as a vertical line intersecting 
the horizontal axis.  
 

 
Figure 2: Two examples of spatial distributions 

 
The figure shows examples of two different models for the 
distribution of the spatial likelihood. The first, shown as a dotted 
line, is one in which the likelihood falls off smoothly on either 
side of the location B. If a threshold range r around location B is 
selected, and the performance criterion asks the likelihood of the 
robot being within r of location B, then in both of the example 
distributions shown here, the likelihood is fairly large. However, 
in the case of the distribution shown as a dotted line, the failure 
cases are also locations close to location B. This is a model of a 
favorable kind of failure.  
This is in contrast to the distribution indicated as a solid line in 
Figure 2. In that case, few of the failure cases, those cases outside 
of the spatial interval r around B, are close to B. The failures in 
this case are mostly severe failures.  

4.4 Probabilistic Robot Program 
The final level of complexity that we add to the simple scenario 
introduced in this section is the inclusion of probabilistic 
algorithms for control of the robot mechanism. Probabilistic 
algorithms have been developed for many applications including 
mapping and for robot localization. Let us consider that we add a 
probabilistic localization algorithm, such as Monte-Carlo 
Localization, to the robot program that controls the robot to carry 
out the repeated traverse mission and explore what this implies for 
the performance criterion. 
The effect of a good probabilistic algorithm should be to improve 
the performance of the robot in a noisy and uncertain 
environment, and that of a poor algorithm, to reduce the 
performance. The mission designer is only interested in whether 
the robot can achieve location B, with constraints perhaps on the 
time, the number of traversals and so forth. We note therefore that 
although the addition of this probabilistic algorithm complicates 
the mechanics of verification, it does not change the form of the 
performance guarantee for the program. 
 

5. INTEGRATING VERIFICATION AND 

DESIGN 
 
This performance guarantee component is being embedded into 
the Missionlab software package, a comprehensive robot mission 
development, simulation and execution environment.  The robot 
software designer builds her program within MissionLab using the 



visual software authoring tools provided. MissionLab allows the 
high-level mission that is generated to be tested in simulation first, 
for verification of the user‟s intent, and then deployed to one or 
more robot platforms for execution.  
The newest components of MissionLab, which are based on the 
formal modeling described in Lyons and Arkin [12], allow the 
designer to carry out an additional software verification step to 
establish performance guarantees for the user-defined mission 
software. This can be very useful in mission-critical or emergency 
response situations (including C-WMD missions such as finding, 
containing, and neutralizing Chemical-Biological-Nuclear (CBN) 
weapons), where it is not uncommon for robot operators to 
customize the robot software, and even hardware, for the specific 
mission; and failure of the mission is not an option in these 
emergency situations. 
 

 

 

Figure 3: MissionLab System with integrated 
 verification module. 

 
Figure 3 depicts the verification extension to the existing 
MissionLab system. The extension provides an operator feedback 
loop in the robot software design process. The process starts with 
the designer creating a robot program in the usability-tested 
MissionLab programming environment for a specific mission [6] 
[14]. Once the high-level mission is specified, the designer may 
simulate the robot behavior within MissionLab to verify correct 
behavior according to the operator‟s intent. However, this 
simulation cannot ever fully capture the interaction between the 
robotic hardware and the real environment. To further guarantee 
mission success in the real environment, the robot controller can 
be validated using the verification module. The verification 
module provides an output to the user indicating whether the 
controller will meet the performance criteria specified by the 
operator. If the controller cannot meet the specified criteria, the 
designer may modify the robot program and the design loop 
continues. Once it does satisfy the requisite criteria, the designer 
may proceed to generate an executable for the robot and then 
deploy it to undertake the mission. 

5.1 Verification Module Inputs 
The inputs to the verification module are the robot software 
controller (specified in an intermediate language referred to as 

CNL [17]), sensor, robot, and environment models, and the user-
specified performance criteria. In MissionLab, the robot controller 
is specified visually by the designer at a very high level of 
abstraction. An example of using cfgedit in MissionLab to design 
a mission is shown in Figure 4. The models of sensors, robots and 
the environment in which the robot program will execute can 
simply be selected from existing libraries. These libraries are part 
of the verification system and are constructed using the modeling 
approach described in this paper. Figures 5-7 show examples of 
the model libraries. Due to the limited space here, only a subset of 
exemplar components of the libraries are shown. 
 

 
Figure 4: Example of Mission Design in MissionLab 

 

 

Figure 5: Example of sensor model library 

 
Once the mission has been built, the designer selects from the 
libraries of sensor and robot models that include a range of noise 
and uncertainty characteristics (Figures 5 and 6). In a similar 
fashion the designer composes an environment model by selecting 
from a library of environments (Figure 7).  
 



 

Figure 6: Example of robot model library 
 
 

 

Figure 7: Example of environment model library  

 

  
Figure 8: Overall architectural design showing user interaction 

 
Based on the sensor, motor and environment choices made, the 
designer is offered a selection of customizable verification 
conditions and constraints. Verification includes the testing of the 
combination of robot program with the environment model for 

specific properties of safeness, liveness, and/or efficiency. The 
result of this testing is the establishment of performance 
guarantees for the software in the environment represented by that 
environment model. If the result is unsatisfactory, in terms of 
design objectives, the designer can use the feedback from the 
verification to iteratively refine the robot program. In other words, 
besides telling the designer “yes/no” that the robot program is 
satisfactory vis-à-vis the mission, the verification module also 
identifies potential causes of failure in the program and provides 
the designer with this useful information. This process is 
illustrated in Figure 8. 
 

 
Figure 9:  Verification Module Input and Output 

 

5.2 Verification Module 
The verification module is based on an approach introduced by 
Lyons and Arkin [12] to present robot programs and the 
environment in which they operate as networks of processes. The 
programs and environments are specified and analyzed using 
process algebra [13], which is a mathematical framework that 
takes a compositional approach to describing process networks.  
The semantics of a process in this framework is a port automaton: 
an automaton augmented with the ability to send and receive 
communication messages.  
This approach has a number of important advantages: 

 The robot program, sensor and actuator models, and 
environment model can all be specified in one notation. 

 The concurrent and communicating composition of 
program, sensor and actuator models and environment is 
the object of verification 

 Noisy and incomplete information is represented as the 
interaction of stochastic processes. 

 The algebraic foundation supports verification by 
automated algebraic reasoning rather than by „simulated 
execution‟ or enumerative model checking, both of 
which have significant computational complexity. 

The verification module does not need to carry out a general 
software verification step, e.g., [9]. In general purpose software 
verification, the verification criterion can include a constraint on 
any of the variables within the program and their value.  
The performance guarantee in our application concerns the robot 
and its operating environment, not the robot program directly. 
Variables from the environment, such as the position of the robot, 
time, and so forth, can be included in the performance guarantee. 
However, variable values within the robot program are only of 
interest in so far as they may affect these variables from the 
environment. 
Furthermore, the models for the robot and its environment, 
selected by the mission designer to validate the program, come 
from the robot, sensor and environment libraries mentioned 



earlier. This means significant preprocessing can be carried out on 
these models to simplify their composition with other models, and 
their verification with a robot program. 
 

6. CONCLUSION 
 

In this paper, we described a software framework for validating 
performance guarantees for C-WMD missions based on 
extensions to the MissionLab mission specification system and on 
a novel process algebra approach to represent robot programs and 
operating environments. The key focus in the paper is on the 
problem of what the performance guarantee should look like from 
an operator‟s perspective. We reviewed the state of the art in 
performance measurements for robots and presented candidate 
measurements for the performance guarantee. Using a simple 
example scenario, we looked at the implications of uncertainty in 
sensor and actuators, as well as uncertainty in the environment, on 
the form of the performance guarantee. 
To be useful to a mission designer, the performance guarantee 
must allow intuitive expression of the variance in performance of 
the program due to uncertainty, including the use of the expected 
value of environment variables, the likelihood of an 
environmental variable being within a specified range, and, to 
understand the severity of failure, the distribution of values for an 
environment variable. 
The study described in this paper serves as the basis for our on-
going work for the Defense Threat Reduction Agency in process 
algebra verification of robot missions and in the construction of 
the verification module for MissionLab. 
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